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Head-sea diffraction by a slender raft with application 
to wave-power absorption 
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(Received 22 April 1980 and in revised form 1 August 1980) 

The parabolic approximation which has recently been found to be useful in other 
physical contexts, is extended to head-sea diffraction of short waves by a slender raft 
on deep water. In particular, it is a much more direct way of getting the inner approxi- 
mation of the outer solution in a scheme of matched asymptotics than the original 
method of Faltinsen (1971). The present results are compared with a more involved 
integral equation method and are found to be remarkably accurate even when the raft 
length is comparable to the wavelength. Finally, the asymptotic method is modified 
for a compliant raft which absorbs wave power by suitably controlled impedance. 
Optimum eEciency and other performance characteristics are predicted. 

1. Introduction 
The scattering problem of a slender body in head seas has received considerable 

attention since Ursell (1968) proved that the velocity potential of a head-sea propa- 
gating along an infinitely long horizontal cylinder must increase linearly with the 
transverse distance, thus becoming unbounded at  infinity. Using Ursell’s solution as 
the inner approximation in a scheme of matched asymptotics, Faltinsen (1971) solved 
the head-sea diffraction of short waves by a slender body of circular cross-section; the 
solution is, however, singular at the bow. For the same problem, Maruo & Sasaki (1974) 
derived an improved solution which was finite everywhere and compared well with 
experimental results. Further progress is being made by Skjmdal & Faltinsen (1980) 
and Liapis & Faltinsen (1980) for slender bodies of arbitrary cross-section. The 
accuracy of this asymptotic method has so far not been compared with other more 
exact methods. In  all these works the far-field solution was first formulated as a 
distribution of sources and dipoles on the longitudinal axis of the body. The inner 
expansion of this far field must be deduced after considerable manipulation before 
matching with the outer expansion of the near-field solution and leading to an Abel 
integral equation. Recent work by Mei (1979) for elastic waves on slender cracks and 
Mei & Tuck (1980) for shallow water waves on slender islands show that the parabolic 
approximation avoids the intricate mathematics needed to seek an inner expansion 
of the outer solution by singularity distributions and leads rapidly to similar Abel’s 
integral equations. One of the principal aims of this paper is to extend the use of para- 
bolic approximation to water waves. For our own practical goals only the case of a 
slender raft of zero draft is demonstrated, but modifications for arbitrary cross-section 
are straightforward. The second aim is to assess the accuracy of the asymptotic 
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FIQURE 1. Notation. 

method by comparing with a direct integral equation method which is much more 
cumbersome, though not restricted to slender bodies or head seas. The asymptotic 
method is then further modified for studying the characteristics of a wave-power 
device. 

2. Formulation of the scattering problem 
Consider head-sea incidence on an elongated body in deep water (see figure 1). The 

body is assumed to be symmetric with respect to its longitudinal axis, which is in the 
direction of the incident wave. The exact linearized boundary-value problem for the 
diffraction potential @ ( X ,  Y ,  2, T) is governed by the following conditions: 

A@ = 0 for 2 c 0; (2.1) 

= 0 on the body B;  (2.2) 

(2.3) 

cD+O as Z+--co; (2.4) 

w2@’/g - QZ = 0 on the free surface P(Z = 0); 

(@-@I)+eXp(i(KR-wT)+KZ) (-a) as KR = K ( X a +  Y 2 ) i - + ~ ,  (2.5) 
w(KR)J 

where W is the incident wave potential 

W = - Aig exp [KZ + i (KX - oT) ] /w  with K = d / g .  (2.6) 

From here on, we normalize all lengths by the body length L and define the normalized 
potential q5 in the following way : 

igA 
@ ( X ,  Y ,  2, T) = - -$(z, w y, z )  e-ioT, (2-7) 

where A is the incident wave amplitude. 

very much less than the beam B, we assume further that 
As our own practical goal in this study is for scattering by a floating raft with draft D 

DIB <l .  (2.8) 

All numerical results to be presented are subject to (2.8). However, it  is not difficult to 
extend the present work to arbitrary cross-sectional shape. 



Water-wave diffraction 507 

With (2.8) the dimensionless boundary-value problem becomes 

A $ = O  in z < O ,  (2.9) 

k $ - $ , = O  on z = O  (domainF), (2.10) 

$, = 0 on z = 0 (domain R), (2.11) 

$ + O  as z-+--Go, (2.12) 

$-$T-+a(d)r-3eik‘+kz as kr = (x2+y2)4+co (2.13) 

(2.14) 
with 

$I@, y, 4 = e kz+ikx. 

Finally, we shall focus our attention on a slender body and short waves, so that 

k = KL 9 1 and b = B / L  4 1 while kb = KB = O(1). (2.15) 

Because of these assumptions, it is natural to employ the method of matched asymp- 
totic expansions. 

3. The method of matched asymptotics via parabolic approximation 
3.1. The inner field potential 

Following Ursell(l968) and Paltinsen (1972), we factor out a rapidly varying part and 
write 

From (2.9) we find 
$(x, y, z )  = E(x, y, z)eikx. (3.1) 

E,, + E,, - k2E = - Exx - 2ikEx on x < 0. (3.2) 

However, near the body E,, and E,, are O(b-2E) while Ex = O ( E )  because E is expected 
to vary slowly in x on the scale of the body length. Therefore, we neglect the last two 
terms in (3.2) and obtain, with a relative error of O(b): 

E,, + E,, - k2E = 0, z < 0, y < O(b),  (3.3) 

kE - E, = 0, z = 0 (domain F ) ;  (3.4) 

E, = 0, z = 0 (domain R); (3.5) 

E+O, Z+-CQ. (3.6) 

Lastly, the boundary condition for large kl yI must be dictated by matching the outer 
expansion of this inner field potential to the inner expansion of the outer field potential. 
For this matching to be possible, we must require the inner field potential not to grow 
exponentially in kl y( .  This condition was first used by Ursell (1968). As was pointed 
out by Faltinsen, the inner problem is formally Ursell’s problem for an infinitely long 
cylinder. 

We shall now solve the inner problem with a Green function and an integral equation. 
It is convenient to decompose E as follows, 

E(x,  y, z )  = F”(x) (ekz+ F’(x, y, z ) ) ,  (3.7) 
P L M  104 I7 
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where F’ and F‘‘are unknown. The part F‘ is clearly governed by (3.3), (3.4), (3.6) and 

FL = -k, z = 0, - b ( ~ )  < < b ( x ) ;  (3.8) 

(3.9) P’ does not grow exponentially as kl yJ + CO. 

The function F“(z)  is to be found by matching with the outer solution. Let us observe 
that F”(x)ekz is a homogeneous solution of (3.3)-(3.6). Because both F’ and P“ are SO 
far unknown, there is no loss of generality to require that F‘ does not contain any 
homogeneous solution. 

Let us define the Green function g( y, z ;  yo) by the following set of conditions: 

gvv+gzz-k2g = 0 in z < 0; 

kg-g, = S(y-yo) on z = 0; 

(3.10) 

(3.11) 

g+O as z+--oo; (3.12) 

(3.13) g has no free wave ekz and does not grow exponentially in kl yI . 

It is easy to see that a formal representation for F’ is 

which satisfies (3.3), (3.4), (3.6) and (3.9). Invoking the remaining boundary condition 
(3.8) on the raft, we get the following Fredholm integral equation of the second kind 
for F‘: 

(3.15) 
f b ( d  

P’(x, y7 0) = J g(y, 0; Yo) [kF’(z ,  Yo, 0) + kIdY0. 
- f b ( X )  

Notice that F’ is only parametrically dependent on x through b(x). We shall write 

F’(y) = F’(x,y, 0) (3.16) 

and y = u/k to obtain the final transverse integral equation, 

(3.17) 

The full expression for g( y, z ;  yo) is derived in appendix, 

from which we get the kernel for (3.17) 

t Garrison (1969) studied obliquely incident waves on an infinitely long raft of constant 
width. While (3.2)-(3.6) still apply with k replaced by k sin p (p = incident angle, in for head 
seas), his radiation condition that scattered waves are outgoing as lkyl + co does not show linear 
growth in the limit of head seas (/l+ $77). In  particular Garrison’s Green’s function (equation (32)) 
does not reduce to our (3.19).  
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Now (3.17) may be solved numerically for each x. Once F‘(y)  is known, the inner 
potential is given formally by 

For matching with the outer solution we need the asymptotic expansion of $ for large 
kl yl . It is shown in appendix that 

s(Y,z;Yo)  = klY-YoIekz+O(exPr-kIY-YoIl), klY-Yol 9 1. (3.21) 

Upon substituting (3.21) in (3.20) we f i n d  

$(x,  y ,  z )  N eikz+kz F”(x) [ 1 + k21 yI / a . i x )  ( l + F ’ ( y o ) ) d y o ] ,  kl y - b (  9 1. (3.22) 
-&x) 

Equation (3.22) gives the outer expansion of the inner approximation. We now turn 
our attention to the outer potential. 

3.2. The outer potential and the parabolic approximation 

In view of the slender body assumption and the outer approximation of the inner 
solution (3.22), we assume for the outer potential 

$(x,  y ,  z )  = F(x ,  y)eikx+kz for kl yI $ 1. (3.23) 

Equation (2.9) now reads 
Fzx + Fuu + 2ikFx = 0. (3.24) 

For large k ,  Fzx/2ikFx = O(k-l)  < 1. The region where Fuu and 2ikFx are of the same 
order of magnitude must be such that y = O(k-4). With Fxs neglected, the approx- 
imate equation is 

Fuu -k 2ikFx = 0 in x = 0 ( l ) ,  y = O(k- t ) ,  (3.25) 

which is referred to as the parabolic approximation. Clearly (3.25) is appropriate only 
in an intermediate field and not in the far field k(x2  + yz)4 1 ,  where radiation is the 
important feature. However, it is sufficient for solving the near field, which is often 
the region of practical interest. 

For a slender body with db(O)/dx < O( l), back-scattering isexpected to be small and 
it is reasonable to assume that 

F ( z , y )  = 1 for x < 0. (3.26) 

The radiation condition for (4 - is now replaced by the weaker condition 

($-4’)+O for k l y J - t o o  

or P(z,y)-+1 for klyl+co. (3.27) 

To the outer observer in y = O(k-J),  the body appears to be lying on y = 0 and the 
following flux condition may be formally imposed, 

aF/+ = & V ( x )  at y = 0 f . (3.28) 
17-2 
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Symmetry with respect to the y axis has been used. V(x) is to be found by matching 
with the inner problem. The outer problem resembles the conduction of heat in a semi- 
infinite rod and may be readily solved, as in Mei & Tuck (1980), 

(3.29) 

The inner approximation of the outer potential is, as IyI goes to 0: 

where 
$k, y, 2) = eikx+k= (Fo(Z) + 1 yI V ( 4  + 0(y2)), (3.30) 

(3.31) 

3.3. Matching and derivation of the longitudinal integral equation 

Requiring that expressions (3.30) and (3.22) should match in the overlapping region 
k-l Q ly l  Q k-4, we obtain 

and, since the problem is symmetric with respect to the plane (x, z) ,  

V(x) = F”(x) k2 [b(x) + 2Su)b(r)F’(y)dy]. 

(3.32) 

(3.33) 

Elimination of F”(x) gives the final integral equation for the longitudinal variation 
of v :  

Once V ( x )  is found, equation (3.22) or (3.23) gives P”(x) and the potential under the 
body is then given by 

$(x, y, 0 )  = eikz P”(x) [ 1 + P’( y)]. (3.35) 

In  summary, we first solve for P‘( y )  a t  each cross-section x by solving the transverse 
integral equation (3.17) and then solve the longitudinal Abel integral equation (3.34) 
for V(x). 

A quantity of interest is the integrated pressure over a lateral cross-section of the 
body, which gives the vertical force 9 ( x )  per unit length of the raft. It is easy to prove 
from (2.7), (3.33) and (3.35) that the dimensional force F ( x )  and its normalized 
counterpart f ( x )  are given by 

9 ( x )  = p g A L f ( x )  = pgAL e ikx  V ( X ) ~ - ~ .  (3.36) 

In  the special case of constant cross-section, b(x) = b on 0 < x < 1 ,  the solution of 
(3.34) can be obtained explicitly as in Mei & Tuck (1980), yielding 

with 

(3.37) 

5 - 1  = k2 (b+2j0*bF’(y)dy) .  (3.38) 
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This solution is expected to give accurate results only when kb is sufficiently small. For 
large kb some reflexion is expected a t  the bow and (3.26) is no longer valid. Quantitative 
checks will be discussed later. Lastly, it is worth noticing that, with (3.37), the asymp- 
totic expansion of (3.35) leads to  

which is consistent with Paltinsen’s (1971, 1972) and Ursell’s (1977) results for a long 
circular cylinder, but much more easily derived. 

Finally, we remark that, for arbitrary cross-sections, the only modification needed is 
in the inner solution. For example, for a body symmetrical about the vertical plane 
(x, z ) ,  Ursell’s source distribution method may be used. The source strength p(s )  along 
the body contour is determined from a Fredholm integral equation similar to (2.15). 
Ursell has also shown that the outer expansion of the potential is 

@(x, y , z )  + eikz ekz ( 1 + k2 1 y 1 477 IC+ p( s )  ek2(5)ds) , kJ y J -+ 00, (3.40) 

where C+ is the body contour on the side y > 0. The remaining task of matching with 
the outer solution proceeds just as before. Liapis & Faltinsen ( 1  980) recently improved 
the numerical efficiency of the solution of the inner problem for arbitrary cross-section 
by replacing the distribution of complicated Green’s functions over the body section 
by a distribution of simple Green’s functions over the body section and the free surface. 
For finite depth it is also straightforward to modify the hybrid element method of 
Chen & Mei (1974), Bai & Yeung (1974) and Yue, Chen & Mei (1978) for conventional 
diffraction problems. 

For the sake of evaluating the asymptotic method, an integral equation method will 
also be used, as sketched below. 

4. Integral equation method 
For the sake of verifying the asymptotic method, we apply a more numerical 

method which solves the exact boundary-value problem for a zero draft body. The 
integral equation involved is essentially due to W. D. Kim (1963) who studied an 
elliptical disk. However a more general solution scheme using triangular elements is 
used here as in Yeung (1973) in another context. The linearized boundary-value 
problem for the scattering potential 08, where 0 = ar+ 08, is governed by (2.1), 
(2.3), (2.4),  (2.5) and 

0g = -0; on the body (domain B). (4.1) 

The pressure amplitude under the body is given by 

To obtain (Ds we use & Green function G(x, x,,) which corresponds to the potential due 
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to a point pressure externally applied on the free surface (without free waves) and 
satisfies (2.1), (2.4), and (2.5) together with 

ipg w2G 
; ; - ( ? - G ~ )  = ~(x -x , )~ (Y-Y , )  on z = 0. (4.3) 

In  terms of CI, as can be written formally as 

x G ( X ,  Y ,  2; Xo,Yo, O)dX0d&. (4.4) 

Incorporating the boundary condition (4.1) in (4.4), we obtain the final integral 
equation 

x G ( X ,  Y ,  2; X,, Y,, O)dXo dYo. (4.5) 

It is now natural to normalize all length scales involved by K = w2/g and we thus 
define the following dimensionless variables : 

x = w2/gx, (4.6) 

- igA 
W = - $(x) e-iwT, 

w (4.7) 

The dimensionless integral equation is 

The solution for g can be found by Fourier transform (Haren 1980) 

where H, denotes Struve function and 

p = ( ( x - ~ ~ ) ~ + ( y - y ~ ) ~ ) ~ ,  r = (pz+z2)$. (4.11), (4.12) 

Eq. (4.10) is in principle a limit of the submerged source potential derived by Haskind 
(1954) and quoted in Wehausen & Laitone (1960, p. 477), when the submergence 
becomes zero. Now the form of this Green's function is very much simpler than that 
commonly used in existing numerical integral equation methods, For z = 0 it further 
reduces to the same Green's function used by Kim (1963) : 

1 
9(X,Y, 0 ~ ~ 0 , Y 0 ~ 0 )  = --+)[Ho(P)+Y,(p)-2iJ,(p)l .  (4.13) 

With (4.13), (4.9) can be solved numerically. For a body symmetrical about the x axis, 
we partition the half y 2 0 into triangles over each of which the potential @ is assumed 
to  vary linearly. The unknowns are the values of @ a t  the nodes and a linear system of 

2 V  
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FIGURE 2. Normalized force f ( a )  along rafts of P class with L / h  = 2. For B / L  = 0.005, 0.1, 
0.15 respectively : -, - - - - -, - - , asymptotic theory; 0, x , + , integral equation. (a )  
Amplitude I f 1  ; ( b )  phase of feriKs = 8,. 

algebraic equations is obtained by applying (4.9) at  all of the nodes. The complex 
matrix equation is inverted by a standard routine. A detailed description of all the 
numerical computations can be found in Haren (1980). All the results presented are 
renormalized as in 3 2 for comparison with the asymptotic theory. 

5. Comparison of two methods 
We first examine two families of rafts with triangular ends of length ?& joining a 

rectangular centre piece. Family P corresponds to k = 477 while family Q corresponds 
to k = 2n. Within each family there are three rafts, to  be labelled by P, or Qi with 
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FIGURE 3. Normalized potential across the raft P3 with L/h = 2 and B / L  = 0.15. x , +, 
asymptotic theory; __ , integral equation, where = phase of q5e-ikx. (a) Section d at 
z = 4; ( b )  section ~3 a t  z = Q. 

i = 1 , 2 , 3  corresponding to increasing slenderness ratio BIL = 0.05, 0.1 and 0.15 
respectively. 

For family P where L = 2A, A being the wavelength, the value of k is not very 
Iarge. The vertical force f(x) along the raft is shown in figure 2 (a )  for the magnitude 
and figure 2 ( b )  for the phase. The agreement of the two methods is very good for P, 
and P2, For the widest raft P, (kb  = 1.885) discrepancies begin to be appreciable along 
the raft near the sharp corners. For the raft P, (the worst case) we also compared in 
figures 3 ( a )  and 3 ( b )  the beamwise variation of #(x, y) at  two fixed sections &and 99, 
which correspond to the fore and aft ends of the rectangular piece. Some discrepancies 
exist in both magnitude and phase along the forward section &while the agreement is 
vastly improved at  the backward section a. 
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X 

- d l 0  

X 

FIGURE 4. Normalized force along rafts of Q class with L l h  = 1. For BIL = 0.05, 0.1, 0.15 
respectively: -, - - - - -, * . * * , asymptotic theory; + , x , 0, integral equation. (a )  Magni- 
tude I f 1  ; ( b )  phase offe-ik2 = 8,. 

For family Q where L = A, the value of k ( N 6.3) is still smaller. Excellent agreement 
is found for f (figures 4a,  b )  and for transverse variations of q5 a t  sections &and 93 
(figure 5). I n  this family the largest kb is N 0.942 (0.15 x 277). 

These generally remarkable agreements show that the asymptotic method is highly 
accurate even when k = K L  is only moderately large as long as kb = K B  is sufficiently 
small ( <  1.2). 

A second factor affecting the accuracy of the asymptotic method is d b l d x .  For the 
same total length as P3, we also computed a pencil-shaped raft with a blunt stern by 
two methods. While kb is also equal to 1.885, the forward section of the raft is much 
sharper than for P,. It was found that the agreement over the forward part is much 
improved. Clearly, if d b ( x ) / d x  is everywhere continuous, the agreement should no 
doubt be better. 

To test the robustness of the asymptotic method still further, we examined a family 
of rectangular rafts Ri with k = 477. The three different slenderness ratios are 

BIL = 0.05, 0.1 and 0.14 (Rl, R,, R3). 
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L-+-+-+-+-+-L-+-+r ++-+-+-+++-+-+ +-+J 

0 0.005 0.01 0.015 0.02 0.025 

Y 

FIGURE 5. Normalized potential across the raft Q1 with L / R  = 1 and B / L  = 0.05. 
x , + , asymptotic theory; ~ , integral equation. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

X 

FIGURE 6. Normalized force along a rectangular raft with L / h  = 2. For B / L  = 0.05, 0.10 and 
0.15 respectively: -, - - - - -, . . . . * , asymptotic theory ; + , x , 0, integral equation. 



Water-wave diffraction 517 
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FIGURE 7 .  Singular behaviour of inner solution with 5 defined by (4.1). 

Figure 6 shows the amplitude and argument of the force ( f ( x )  exp ( - i k x ) ) .  The 
agreement between the two methods is excellent for the narrowest raft R,, still very 
good for R,, and discrepancies a t  the bow ( x  = 0) become quite evident for R3.t  This 
is quite natural since assumption (3.26) is clearly violated for blunt bows. Transverse 
variations of 4 have been checked for R, a t  the section x = 0 (bow) and at the section 
x = 3. Again discrepancy is very small towards the stern. It is also found that 4 is 
essentially constant in y for small kb, suggesting a convenient approximation which 
eliminates the need to solve the transverse integral equation altogether. Plots are not 
presented here. 

Finally, we report that the solution to the transverse integral equation becomes 
unbounded near k,b = 1.98615 f (4 x This is shown in figure 7 for the quantity 

6 = ykb (1 +F' (u ) )du  
- 3kb 

as a function of kb. There is strong numerical evidence that the solution of (3.17) 
behaves as 

F'(k, y) = WL) + O( 1) 
k - k ,  

in the neighbourhood of k,b. This singularity affects the accuracy of (3.17) by a few 
per cent but still leads to a finite solution to the integral equation (3.34) whose right- 
hand side is zero for k = k,. Furthermore, because F"(x) is also zero at  the singularity 
(see (3.32)), the inner solution is finite although the normalized inner solution 1 + F'( y)  
is not (see (3.35)).  These conclusions have been numerically verified by studying a 
pencil-shaped raft with maximum kb = 3 .  The forces obtained by the asymptotic 
method compare well with the integral equation method at  all values of kb including 

t The case for BIL = 0.15 has even greater discrepancy near the bow and is not presented. 
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the neighbourhood of kb = 2. In a note to be published, Yue & Mei (1981) 
give analytical and numerical evidence that the singularity is inherent in the 
boundary-value problem for F',  is independent of the solution technique, and hence 
differs somewhat from the usual irregular frequency. 

On the whole, the main advantage of the asymptotic method is that, within the 
limits of applicability, it is very economical in computation time and convenient for 
programming, in comparison with the integral equation method. Let the raft be 
discretized into N intervals longitudinally and no more than M intervals transversally . 
The computational time for the asymptotic theory is O(NM3) for solving N transverse 
integral equations, whereas the time for the two-dimensional integral equation method 
is O(N3M3),  if similar interpolating functions are used in both methods. Of course the 
latter method is not restricted to slender bodies or short waves. 

We now turn our attention to an interesting application of the asymptotic method, 
namely wave energy extraction. 

6. Application of the parabolic approximation to a wave-power absorber 
An attractive way to extract energy from ocean waves has been invented by Masuda 

(1979) and is currently being tested in the Japan Sea. The device consists of a row of 
ten air turbines in as many vertical chambers opened along the keel of a ship. The ship 
is kept stationary in head seas by mooring lines and the waves resonate the water 
inside the chambers along the ship. These oscillating water columns create a variable 
pressure in the air trapped in the chambers, which in turn drives the turbines. A 
related device has also been suggested by French (1979)) who uses flexible air bags 
floating on a slender frame. The breathing action of the bags as the waves pass by is 
used to produce high-pressure oil which in turn drives turbines. 

It is possible to use the asymptotic method to study a device which crudely models 
the Masuda ship and, to some extent, the French bags. We consider a long slender body 
in head seas which absorbs wave power by controlling the pressure underneath its hull. 
To simplify the theory we idealize the ship as having zero draught (the ship may be 
supported on piles), and assume an infinite number of turbine chambers distributed 
uniformly over the entire keel. We also simplify the chamber-turbine system by a 
spring-mass-dashpot system (Evans 1978) which exerts on the water beneathapressure 
equal to 

where overhead dots denote time derivatives and m, c and a refer to unit area and are 
assumed to be constants. From kinematics we have 

P = (m(+cE+a&, where 6 = q(X,Y)e- i"F,  (6.1) 

P = m6,+c@,+a&,. (6.2) 

Both equations are in physical variables. 
Thus on the water surface directly interacting with the turbines 

.. P 1 .. @+g@, = -- = --(m@.,+c@,+a@,,). 
P P 

Introducing the same dimensionless variables as in J 2, we get 

q5Z:-kq5=,8q5B on z = O ,  
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where 
1 iaw 

/? = -(mw2-c)+- 
P9 P9 

Defining 
k' = k/(l-/3), 

which is in general complex, we have 

q52:-k'$=0 on z = O .  (6.6) 

I n  Masuda's ship the water column in the chamber is a part of the hydrodynamic 
system and the equivalent m and c may in general depend on w. However, other 
resonant mechanisms without water columns are conceivable which may be closely 
approximated by constant m and c. 

The same method of matched asymptotics may now be used. While the outer 
problem remains formally the same, the inner problem needs modification. The inner 
potential may be decomposed as in (3.1)) (3.7) and (3.16), i.e. 

$(x,y,z) = eikZB(x) [ekZ+F(x,y,z)]. (6.7) 

FUV+FS# = kZF, z < 0, (6.8) 

kF-Fz  = 0, z = 0 (domain F ) ,  (6.9) 

The inner problem is governed by 

k'F-pz = (k-k'), z = 0 (domain R), (6.10) 

P + o  as z - f - c ~ ,  (6.11) 

p does not grow exponentially as kl yI +a. (6.12) 

We use the Green function g defined in (3.18). It is easy to see that (3.14) still holds 
formally for F while the transverse integral equation becomes 

(6.13) 

The numerical solution of (6.13) can be carried out in exactlythe same wayas for (3.15) 
or (3.17). The asymptotic value of the inner potential can also be derived: 

After matching with the outer solution the longitudinal integral equation is easily 

This integral equation is solved exactly as (3.34). Once P is found, F is given by 

P ( x )  = W )  (6.16) 

k(k - k') [ b(x) + 2/04bF(y)aY] 
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FIGURE 8. Variation of L,/L vs. K L  for ship S with BIL = 0.05. Optimized at K L  = 2n. 
A, p = popt; B, C, Re p = Re pop, (1 +0.1), a = a+; D, E, R e p  = Re Po,,,, a = aODt (1  0.2). 

and the potential q5 then follows from (6.7) and (3.14). The average power extracted is 

3 H X )  

- 3 H X )  
p, = E/02"'wdT[IdX/  Re(P)Re(@,,)dY on 2 = 0. (6.17) 2n 

We make use of (6.1), (6.4) and (2 .7) ,  and compute the time average to find 

Let us denote the incident wave power over a width .L by 

P9A2 g PL = - -L, 
2 2w 

and further define La by 

(6.18) 

(6.19) 

(6.20) 

Thus La is the absorption width, while La/L is the ratio of power extracted to power 
incident over a width equal to the raft length L, and is a measure of the eficiency of 
the device. An alternative form of La/L is 

Attention will now be turned to the numerical results. 
We study first the sample ship S depicted in the insert of figure 8, with slenderness 

ratio B/L = b = 0.05. The extraction impedance /3 = [ ( m d - c )  + i a w ] / p g  which 
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L l h  = k / 2 n  

0.7 
0.8 
0.9 
1.0 
1.2 
1.5 
2.0 
2.5 
3.0 
4.0 

Po,* 

0.81 & 0.036i 
0.79 5 0.03% 
0.76 f 0.044; 
0.74 f 0.046i 
0.69 f 0.0541: 
0.63 f 0.061i 
0.54 f 0.070i 
0.47 f 0.074i 
0.41 f0.077i 
0.33 I: 0.076; 

L a P  

0.908 
0.836 
0.776 
0.727 
0.650 
0.569 
0.482 
0.426 
0.386 
0.334 

LalA 
0.635 
0.669 
0.698 
0-727 
0.781 
0.854 
0,964 
1.069 
1.159 
1.338 

TABLE 1. Optimum results for a range of k .  B /L  = b = 0.05; 
shape of ship S in figure 8. 

represents the behaviour of the ‘turbines’ T is chosen, by numerical tests, so as to 
maximize L,/L at k = 277, i.e. L = A. The optimum values for the system (S, T) are 

La/L = 0.727 for pOpt = 0.74 + 0.046i. 

The variation of La/L with k for this sample ship is shown by curve A under the 
assumption that R e p  and the damping rate are kept fixed a t  the values which are 
optimal at k = 2n, i.e. 

(i) Re(P) = 0.74 = Re(p0,,), 

Condition (i) can be met by designing a turbine with c = 0 and m varying as i/w2, or 
with m = 0 and c taking a constant negative value (both options may imply electronic 
control). The resulting efficiency curve shows a broad bandwidth since L,/L is larger 
than 0.5 for 4 < k < 9. 

To understand better the influence of p on L,/L we also test the sensitivity of the 
response curve to  variations in R e p  and a0. In  figure 8 curves B,  C, D and E correspond 
respectively to the following values: 

”) C 

”) R e p  = Rep,,,,, 
E 

OL = (1 T 0*2)OLOP,. 

These efficiency curves appear to  be rather independent of OL but vary greatly with 
Rep. This can be explained crudely as follows: The efficiency is proportional to [?I2 
where [TI2 is the averaged square amplitude of the displacement of the water surface 
under the ship. It is possible that, when the damping rate is decreased, [~l~increasesin 
such a way that their product remains relatively constant. No such self-correcting 
effect exists for Re p since its variation simply detunes the system, yielding a reduced 
efficiency. Quite naturally, an increase in the value of R e p  shifts the optimum fre- 
quency t,owards lower values and a decrease in R e p  shifts,it towards higher values. 
Thus it is desirable to have an automatic control which can adjust Re p according to 
the changing seas. 
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FIGURE 9. L,/L vus. K L  for ship S.  Optimum for all K L  according t o  present theory ( F )  
as compared with Newman’s theory and Masuda’s experiments. 

We then optimize La/L with respect to both real and imaginary parts of p for ten 
values of k/2n = L / A .  The results are shown in table 1. Note that R e p  is always 
positive, implying that the turbine-chamber system should have sufficient inertia or 
negative spring constant. The optimum efficiencies La/L are plotted as curve F in 
figure 9. For comparison we also show the estimate of Newman (1979) who did not 
inquire how optimization is achieved, and Masuda’s experimental results. t Despite 
the differences in details between the actual Masuda ship and the theoretical model 
presented here, it is clear that  much room is left for further optimization of Masuda’s 
design. 

By replotting the optimum efficiency curve F in figure 8 in terms of L,/A, we have 
found (but do not show) that for the range of k considered La/A is approximated 
closely by the straight line La/A 0.16 (L /A)  + 0.6. This result shows that for 
relatively small L l A  the important reference scale to  which La should be compared is 
the wavelength A but, for large values of L / A ,  L becomes the more appropriate 
reference scale and La approaches 0.16L as the length of the ship goes to infinity. 

Newman’s results quoted in figure 9 are based on the assumption that the motion 
of the body consists of two orthogonal sinusoidal modes with argument kx. We have 
found (Haren 1980)) however, that  171 is non-uniform in x, being the greatest near mid- 
ship and then steadily decreasing towards the stern. The phase of 7, relative to the 
incident wave, increases almost linearly along the ship from a very small value a t  the 
bow to n at the stern. Clearly, our 7 corresponds to the sum of many trigonometric 

t The results may have been influenced by the finite width of the wave tank. 
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FIGURE 10. Contours of integration. (a )  Original contours ; 
( b )  deformed contours. 

modes and this larger degree of freedom explains why our efficiency in figure 9 is 
slightly better than Newman’s. In  principle still higher efficiency is possible if the 
turbine impedance is allowed to  vary along the ship. 

It should be remarked that the maximum magnitudes of (71 under optimum condi- 
tions are 3, 4.2 and 7 for b = 0.5, 0.1 and 0.05 respectively. The large amplitude for a 
very slender raft is undesirable both for violation of the linearized approximation and 
for the implied large stresses in the raft. One must then restrain the motion at the 
price of reduced efficiency (Newman 1979). 

7. Concluding remarks 
We have shown that, for head-sea incidence of short waves on a slender body, the 

parabolic approximation can be used for the intermediate far field, and leads quickly 
to the Abel integral equation after matching with the inner solution of Ursell. Within 
the stated limits, this asymptotic theory is simple, economical, and also accurate when 
compared with the integral equation method. The parabolic approximation has also 
been applied by Mei & Tuck (1980) to a ship moving a t  finite speed into head seas, in 
very shallow water (long wave theory) and appears to be equally feasible for deep 
water. However, it is as yet unclear whether extension to arbitrary incidence can be 
made. 
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DE-AC02-79-ET-21062) and the US .  Office of Naval Research, Fluid Dynamics 
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Appendix. Derivation of the Green function g for the inner problem 
We look for g(y,z;y,) satisfying equations (3.10) to (3.13). Without any loss of 

generality we may take yo = 0 and write g( y, z ;  0) = g( y, z) .  Since g is not growing 
exponentially, the solution can be found by Fourier transform in the sense of general- 
ized functions (Lighthill 1967). The solution is easily found to be 

where the contours are indented around the double pole at  n = 0 as shown in figure I0  (a).  
This choice of contour was first made by Ursell in order to render g symmetric in y. 

For (n2 + k2)t we choose the cuts along [ik, ico] and [ - ik, - ico] and the branch so 
that (n2+ k2)J+  In1 as In1 +GO along the real axis. 

Let us examine y > 0. The path of the two integrals are deformed to C as depicted 
in figure lo@). After accounting for the residue, 

- 2ni Res (0) + 2 
4n 

But the integral in (A 2) has contributions only along the two sides of the branch cut 
because y is positive and expz(n2 + k2)4 / (k  - (n2 + k2) t )  vanishes uniformly as In/ -+a. 
Along the two sides of the branch cut 

(n2-t-k2)* = +i(lnI2-k2)4 on the side. 

Hence the integral in (A 2) may be written as 

e+U 
= - 2 jkm [ k  sin (z(v2 - k 2 ) t )  + (v2 - k2)4 cos (z(v2 - k2)4)] dv. (A 3) 

The residue at n = 0 is 

= 2ikyek". 
d n2 exp [z(n2 + k2)t  - iny] 

k - (n2 + k2)4 
Res (0 )  = lim- ( 

n-to dn 

Using the symmetry of g with respect to y, we finally get 

g( y, z )  = kl yJ ekz - ( k  sin (z(v2 - k2)&) + (v2 - k2)4 cos (z(v2 - k2)*) dv. 

(A 5) 

If the source point is at  yo, we should replace JyI by Jy-yoI in (A 5). On the body 
(z  = 0) the expression is much simpler : 
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The integral above can be evaluated in a more convenient way with the successive 
changes of variables v = kt and t = cosh u. The final expression for g( y, 0) is then 

The integral in (A 7) is very easy to evaluate numerically. An accuracy within 10-6 
can be achieved by taking the upper limit to be 8 for k J  yI = 0. The range of integration 
can be further reduced for increasing kl yI . 

It is also possible to obtain an asymptotic expansion of g( y, 0) for large kl yI . From 
equation (A 5) it is easy to see that (g( y, z )  - ekrk/ yI ) decays exponentially for k( yI 9 1 : 

Hence the asymptotic expansion is 

g(y,x) = k/ylek~+O(e-kl~l)  for klyJ 9 1, 

which behaves as the submerged source of Ursell (1968). 
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